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Abstract—802.11 device fingerprinting is the action of char-
acterizing a target device through its wireless traffic. This
results in a signature that may be used for identification,
network monitoring or intrusion detection. The fingerprinting
method can be active by sending traffic to the target device, or
passive by just observing the traffic sent by the target device.
Many passive fingerprinting methods rely on the observation
of one particular network feature, such as the rate switching
behavior or the transmission pattern of probe requests.

In this work, we evaluate a set of global wireless network
parameters with respect to their ability to identify 802.11
devices. We restrict ourselves to parameters that can be
observed passively using a standard wireless card. We evaluate
these parameters for two different tests: i) the identification
test that returns one single result being the closest match for
the target device, and ii) the similarity test that returns a set
of devices that are close to the target devices. We find that
the network parameters transmission time and frame inter-
arrival time perform best in comparison to the other network
parameters considered. Finally, we focus on inter-arrival times,
the most promising parameter for device identification, and
show its dependency from several device characteristics such
as the wireless card and driver but also running applications.

I. INTRODUCTION

Device fingerprinting is the action of gathering device
information in order to characterize it. This process gen-
erates a signature, also called a fingerprint, that describes
the observed features of a device in a compact form. If the
generated signature is distinctive enough, it may be used to
identify a device.

One application of 802.11 device fingerprinting is intru-
sion detection and more precisely the prevention of Medium
Access Control (MAC) address spoofing. MAC address
spoofing is the action of taking the MAC address of another
machine in order to benefit from its authorization. The
prevention of MAC address spoofing is of importance in
various scenarios. Open wireless networks such as hot-spots
often implement MAC address based access control in order
to guarantee that only legitimate client stations connect, e.g.
the devices that purchased Internet access on an airport hot-
spot. An attacker can steal a legitimate device’s session by
spoofing the latter’s MAC address.

Another application of fingerprinting is the detection of
rogue access points (APs). Tools like AirSnarf or Raw-
FakeAP enable an attacker to set-up a rogue AP, which result
in client stations connecting to the fake AP instead of the
genuine one.

Fingerprinting is also useful in key protected wireless
networks (e.g. WPA2). It can be used after a key-based
authentication mechanism in order to control if only au-
thorized devices are in the network. Indeed wireless keys
may leak as there are several normal situations where e.g.
home users voluntarily give out their wireless key without
renewing it afterwards, as for instance when allowing a
guest’s laptop to access the home network. While this
scenario is both common and simple, it also endangers the
home network; the guest may abusively reconnect or the key
may eventually leak from his laptop. Tools like aircrack-ng
exist that allow non-professional hackers to crack the (known
to be insecure) WEP protocol. Finally, commercial services,
like wpacracker.com, exist which try to recover WPA keys.

Contributions: We investigate new passive fingerprint-
ing candidates for 802.11 devices. More precisely, we mea-
sure five network parameters that can be captured with a
standard wireless card. Using a generic method to calcu-
late a signature of a device, we compare the ability of
each network parameter to characterize 802.11 devices. We
perform the similarity and the identification tests, which
we evaluate using our own measurement data as well as
public data obtained from large conference settings. We
use detection window sizes of 5 minutes. We find that
the network parameters transmission time and frame inter-
arrival time perform best in comparison to the other network
parameters considered. Our evaluation renders a probability
of correct classification that ranges from 79.4% to 95.0% for
the transmission time and from 62.7% to 93.1% for frame
inter-arrival times. In the most difficult testing conditions,
the wireless traffic of a conference, the inter-arrival time
renders the best identification ratios. Up to 56.6% of the
devices could be uniquely identified with a false positive
rate of 0.1. Finally, we focus on inter-arrival times, the most
promising parameter for device identification, and show its
dependency from several device characteristics such as the
device’s wireless card and driver or running applications.

The remainder of this paper is organized as follows. We
present related work in Section II. Section III presents the
different network parameters considered, and Section IV
presents the proposed fingerprinting method. Section V
evaluates our method against several traces. We then present
in Section VI the 802.11 features the generated signature
depends on, and discuss possible attacks and applications in
Section VII. Finally, we conclude with Section VIII.
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II. RELATED WORK

A first class of related work fingerprints wireless client
stations by analyzing implementation specificities of the
network card and/or driver. Franklin et al. [9] characterize
the drivers during the “active scanning period”. This process
is underspecified in the IEEE 802.11 standard regarding the
frequency and order of sending probe requests. Therefore,
each manufacturer implements its own algorithm and timers.

Gopinath et al. [11] show that 802.11 cards exhibit very
heterogeneous behavior due to implementation specificities.
They test a set of 802.11 features such as Random Back-
off timers or Virtual Carrier Sensing and present their
experimental results. The observed heterogeneity in behavior
may be used to fingerprint a card’s vendor and model, but
does not further analyze this aspect.

Bratus et al. [6] propose an active method to fingerprint
client stations as well as APs. They send malformed or
non-standard stimulus frames to the fingerprintee and apply
decision trees on the observed response or behavior. This
yields a signature of the vendor/manufacturer. Because it is
active, an attacker can easily detect this technique.

Cache [7] proposes two methods for fingerprinting a
device’s network card and driver. The first one is active and
uses the 802.11 association redirection mechanism. Even if
well specified in the IEEE 802.11 standard, it is very loosely
implemented in the tested wireless cards. As a consequence,
each wireless card behaves differently during this phase
which allows characterizing them. The second fingerprinting
method of Cache is passive. It analyses the duration field
values in 802.11 data and management frames. Each wireless
card computes the duration field in a slightly different way,
which allows characterizing the network card.

Common to all above approaches is that they cannot
differentiate between two devices using the same network
card and driver. Therefore, those approaches may not be
used for identifying individual devices.

Another class of related work allows fingerprinting indi-
vidual APs. Jana et al. [12] calculate the clock skews of
APs in order to identify them. The authors calculate clock
skews by using the timestamps contained in Beacon frames
emitted by the AP. Arackaparambil et al. [3] refine the above
work and propose a new method yielding more precise clock
measures. They also successfully spoof an AP, making it
indistinguishable by the methods used by Jana et al.

Loh et al. [14] fingerprint client stations, by observing
probe requests. Stations send probe requests according to
characteristic periodic patterns (see [9]). The period itself is
subject to slight variations. Far from being uniform, these
variations can be clustered. With enough observation time,
each cluster slowly derives, with a slope proportional to the
time skew. This work is capable of uniquely identifying
client stations; however, the requires more than one hour
of traffic and is only applicable to client stations.

In contrast to the above papers, Pang et al. [15] discuss
privacy implications in 802.11. Their paper highlights that
users are not anonymous when using 802.11 as the protocol
uses globally unique identifiers (the MAC address), which
allow user tracking. Even if we suppose that this identifier
is masked (e.g. by temporarily changing addresses) it is
possible to track users by observing a set of parameters in
the 802.11 protocol. The observed parameters are network
destinations, network names advertised in 802.11 probes,
802.11 configuration options and broadcast frames’ sizes.
With encrypted traffic, three out of the four parameters still
apply. The presented identification problem is close to our
identification test. To answer this test successfully, their
fingerprinting technique requires traffic samples for each
user that last at least one hour.

III. 802.11 NETWORK PARAMETERS

This section describes the network parameters we consider
for fingerprinting. We focus on network parameters that we
can easily extract using a standard wireless card. We do not
require the usage of expensive equipment such as software
defined radios. Thus, the routine monitoring setup consists
in a monitoring device that captures all 802.11 frames using
a standard wireless card in monitoring mode on a specified
802.11 channel.

We seek a fingeprinting method applicable on encrypted
802.11 traffic, making the fingerprinting method more uni-
versal and enabling fingerprinting devices from networks the
monitoring device is not part of.

The fingerprinting method should not perturbate the net-
work and should be hardly detectable by an attacker. As a
result, our fingerprinting method is passive, i.e. the monitor-
ing device does not generate any additional traffic.

We also require that the method relies on global network
parameters, thus representing the traffic generated by a
sender in general, rather than focusing on specific frames or
features. In particular, it should be difficult for an adversary
to deactivate or forge the considered network parameters.
These considerations eliminate the option of extracting in-
formation from the 802.11 headers generated by the emitting
station. The sender fills the fields in these headers, and the
headers can thus be spoofed (e.g. using tools such as Scapy).

Finally, the fingerprinting method should be accurate, a
property that we evaluate in the rest of this paper.

In light of the preceding requirements, we focus on
information that we can extract solely from Radiotap [1] or
Prism headers. The receiving wireless card driver generate
these headers. An adversary that would like to change fields
in these headers needs to change its behavior actually.

We consider the following network parameters, all being
candidates for a fingerprinting method with the aforemen-
tioned requirements:

• Transmission rate: The 802.11 standard [2] allows
transmitting frames using a set of predifened rates.



Each sending wireless card chooses to transmit a given
frame at a given rate. Gopinath et al. [11] highlight
that transmission rates distribution of wireless cards
depends on the card’s vendor.

• Frame size: The size of a 802.11 frame depends on
the type of the frame, the fragmentation threshold, the
version of IP1 or the applications generating the traffic.
Pang et al. [15] use broadcast frames size as an implicit
identifier for wireless devices.

• Medium access time: The time a wireless device waits
after the medium as become idle and before sending
its own frame. Gopinath et al. [11] already noted
that some device manufacturers implement the IEEE
802.11 standard very loosely with respect to the random
backoff algorithm, which is one of the medium access
mechanism of 802.11.

• Transmission time: The transmission time is the time
required to transmit a frame, thus the time between the
start of reception and the end of reception of a frame.

• Frame inter-arrival time: The frame inter-arrival time
is the time interval between end of receptions of two
consecutive frames.

IV. METHODOLOGY

This section explains how we extract and evaluate sig-
natures from the five network parameters considered in the
previous section.

A. Signature construction

Signature calculation consists in generating several his-
tograms, one histogram per frame type (e.g. Data frames,
Probe Requests,. . . ). A histogram represents the frequencies
of the values measured. Each histogram is weighted, which
gives more or less importance to certain types of frame.
We define the signature of device as the set of generated
histograms generated by the device and their weights.

We loose part of the information contained in a network
trace by choosing histograms during signature calculation.
Histograms may for instance eliminate characteristic pat-
terns or periodic behaviors. Signal processing methods such
as n-dimensional histograms, correlation functions or fre-
quency analysis using Fourier transformations or Wavelet
transformations may capture these behaviors. However, the
subject of this work is not to find the most adequate signal
processing method, but rather to highlight that some high
level network parameters can achieve good detection ratios,
even with a simple signature calculation method. We suspect
that the network parameter that yields good performance
with histograms will also yield the good results with more
advanced signal processing methods. Section VI provides an
intuition on this latter assertion.

1IPv4 addresses use 32 bits while IPv6 addresses use 128 bits. IP
addresses are transported in 802.11 frames, thus changing the size of the
frame.
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Figure 1. Measurement method example.

We now describe the signature generation process more
formally. The sequence f0, . . . , fn−1 of frames represents
the network trace captured by the monitoring device. ti
denotes the time of end of reception of the frame fi (where
0 ≤ i ≤ n − 1), and frames are ordered in increasing
reception time (i.e. ∀i : ti−1 < ti). The sender si sends
the frame fi. For frames like ACK frames or clear-to-send
frames [2] the sender is unknown2, thus si = null.

We calculate or extract the network parameter pi from
the Radiotap or Prism header for each frame fi. Depending
on the network parameter considered, pi may have different
meanings. Radiotap or Prism headers include the size sizei,
the transmission rate ratei and the end of reception or the
start of reception ti of a frame fi. If the considered network
parameter is the transmission rate, we have pi = ratei.
Similarly, pi = sizei if we consider frame sizes. We can
also calculate the inter-arrival time ii = ti − ti−1, the
transmission time tti = sizei/ratei and the medium access
time mtimei = ti − tti−1.

We add the measured or calculated parameter to the set
P ftype(si). P ftype(s) denotes the set of values measured or
calculated for frames of type ftype for the sending device
s. We denote |P ftype(s)| the number of observations for
frames of type ftype for device s.

Figure 1 illustrates our method. Client stations A, B,
C and D use the same channel and send the frames as
depicted. The monitoring device listens on the same channel
and receives all frames of the emitting client stations. Thus,
the sequence of frames f0, . . . , f5 corresponds to the frame
sequence DATA, ACK, DATA, ACK, RTS, CTS. The first
ACK frame f1 has no explicit sender, s1 = null. Thus, we
drop the associated value p1. Similarly, we drop the frames
f3 and f5. If we use transmission rate as a parameter, we
associate the value rate2 to client station A, as frame f2
is sent by station A. We associate rate4 to client station
C. Thus, PDATA(A) = {rate2} and PRTS(C) = {rate4}.
Similarly, if we use inter-arrival times as a parameter, we
associate the interval i2 = t2 − t1 to client station A. We

2ACK and CTS frames do not include a sender address or transmitting
address field.
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Figure 2. Example inter-arrival time histogram

associate the interval i4 = t4 − t3 to client station C. Thus,
PDATA(A) = {t2 − t1} and PRTS(C) = {t4 − t3}.

Based on the above measurements we generate a his-
togram for each frame type and each emitting client station.
It is composed of bins b0, . . . , bk−1. We denote oftypej

(where 0 ≤ j ≤ k − 1) the number of observations in bin
bj . We convert the histogram into a percentage frequency
distribution, where the bin’s bj percentage frequency is
P ftype
j = oftypej /|P ftype(s)|. The resulting histogram for

a give frame type is histftype(s) = {P ftype
j |∀j ∈ 0 ≤ j ≤

k−1}. Figure 2 shows a resulting example histogram using
inter-arrival times.

Finally, we define the signature Sig of device s as follows:

Definition 1 (Device signature):

Sig(s) = {(weightftype(s), histftype(s))|∀ftype}

The variable weightftype weights the importance of a
histogram for a given frame types. For reference signature
we choose that

weightftype(s) =
|P ftype(s)|∑

ftype |P ftype(s)|

, thus the distribution of frame types is equivalent to the
weight given to each frame type.

B. Detection methodology and accuracy metrics

In general, fingerprinting methods have two phases: a
learning phase which populates a reference database, and
a detection phase which matches wireless devices against
the reference database.

The reference database is built using a training dataset,
which is in our case a wireless trace. The reference database

stores the signatures Sig(ri) of each wireless devices ri, i.e.
of each source address, appearing in the trace. We suppose
that no attacker polluted the training data. The validity of
this hypothesis is discussed in Section VII.

In the detection phase, we analyze a second wireless
trace, which we call validation dataset, and extract the
signature Sig(ci) for all devices appearing in this trace. We
call the devices of the validation dataset candidate devices.
We compare each candidate device’s signature with all the
signatures of the reference database using the algorithm
described in Section IV-C. This yields a vector of similar-
ities < sim1, sim2, . . . , simN >, simi corresponding to
the similarity of the unknown candidate device’s signature
compared to the reference signature of device ri.

For each candidate device, we are interested in resolving
the following two tests:

• Similarity: The fingerprint algorithm returns a set of
reference devices which signatures similarity simi is
greater than a threshold T . Thus we are interested in
knowing which reference devices are similar to the
candidate one.

• Identification: The second and more difficult test is
interested in actually and uniquely identifying the
candidate device. To do so, we pick the reference
device with the greatest similarity from the vector of
similarities returned by the previous test.

Regarding the similarity test we are interested in the True
Positive Rate (TPR) and the False Positive Rate (FPR). The
TPR is the fraction of candidate wireless devices known to
the reference database for which the returned set contains the
actual device. The FPR is the fraction of returned reference
devices that do not match the actual candidate device. In
section V, we calculate the FPR and TPR as a function of
the threshold T .

We plot a similarity curve which draws the TPR as a
function of the FPR (see Section V). We do not apply
classical receiver operating characteristic (ROC) curves in
this context, since we handle multiple classses (one class per
reference device). In particular with the similarity curve, it is
possible to have results in the lower right triangle of the plot.
Similarly to ROC curves, we also calculate the Area Under
the Curve (AUC), which measures the global probability of
correct classification.

We express the accuracy metric for identification test as an
identification ratio. The identification ratio is the fraction of
candidate wireless devices known to the reference database
that the fingerprinting method correctly identifies. As with
the similarity test, a false positive rate can be calculated for
the identification test. For the identification test, the FPR is
the fraction of candidate wireless devices that fingerprinting
method mistakenly identifies as another device.



C. Matching algorithm and similarity measures

The algorithm below depicts how to match the sig-
nature Sig(c) of a candidate c against the reference
database. The algorithm returns a vector of similarities
< sim1, sim2, . . . , simN >, simi corresponding to the
similarity of the unknown candidate device’s signature with
the reference signature of device ri. We use the Cosine-
similarity, as defined below, to calculate the similarity be-
tween two histograms. We weight the resulting score with
the frame type weight weightftype(ri) of the reference
signature.

Algorithm 1 Match: Match the signature Sig(c) of candi-
date c against reference database

for all ftype ∈ Sig(c) do
Extract histftype(c) from Sig(c)
for all references ri in reference database do

Extract histftype(ri) from Sig(ri)

simftype
i = simCos(hist

ftype(c), histftype(ri))

simi = simi + weightftype(ri) ∗ simftype
i

end for
end for
return < sim1, sim2, . . . , simN >

Let hist(r) = {Pr,j |∀j} a reference histogram for device
r. Let hist(c) = {Pc,j |∀j} a candidate histogram for device
c.

Definition 2 (Cosine-similarity):

simCos(hist(c), hist(r)) = 1−
∑k−1

j=0 (Pc,jPr,j)√∑k−1
j=0 P

2
r,j

√∑k−1
j=0 P

2
c,j

The Cosine-similarity is based on the Cosine-distance [8].
The similarity equals 1 if two signatures are exactly the
same. It yields 0 when signatures have no intersection.

V. EVALUATION AND IMPLEMENTATION

A. Wireless traces

We evaluate our methodology against four different wire-
less traces. We use a publicly available 7 hours trace
collected on August 19th 2008 at 11am on one monitor-
ing device during the 2008 Sigcomm conference [16]. We
consider two subsets of the Sigcomm trace: i) the entire
7 hours trace, that we call conference 1, and ii) the 1st
hour trace, extracted from the 7 hours trace, which we
call conference 2. We also generated two wireless traces
ourselves. We generated the first one, called office 1, by
capturing all wireless traffic on channel 6 during 7 hours
in our office. We recorded the second one, called office
2, during one hour another day in the same setting. The
conference traces are not encrypted (i.e. no WEP or WPA).
The office traces are encrypted (WPA).

We evaluate our fingerprinting method by splitting each of
the wireless traces described above in two sets: i) a training
dataset and ii) a validation dataset. For the conference 1 and

Conf. 1 Conf. 2 Office 1 Office 2
Total duration 7 hours 1 hour 7 hours 1 hour
Ref. duration 1 hour 20 min 1 hour 20 min
Cand. duration 6 hours 40 min 6 hours 40 min
Encryption None None WPA WPA
# ref. devices 188 97 158 120

Table I
EVALUATION TRACES FEATURES.

Network parameter Conf. 1 Conf. 2 Office 1 Office 2
Transmission rate 4.0% 33.5% 83.7% 70.6%
Frame size 53.4% 78.2% 85.7% 70.0%
Medium access time 63.4% 61.5% 86.4% 68.8%
Transmission time 80.7% 79.4% 95.0% 82.9%
Inter-arrival time 62.7% 72.5% 93.7% 80.1%

Table II
AREA UNDER THE CURVE (AUC) FOR THE SIMILARITY TEST.

office 1 trace, the training dataset corresponds to the first
hour of the 7 hour trace. The 6 remaining hours compose the
validation dataset. For the two one hour traces, conference
2 and office 2, we use the first 20 minutes as a reference
trace and the remaining 40 minutes as a training trace. We
use a detection window size of 5 minutes for the validation
dataset. We match all candidate devices against the reference
database for each detection window. Using a minimum
number of frames of 50 for generating the signatures (see
Section 4.3) we obtain training database sizes and number
of candidates as shown in Table I.

B. Evaluation

1) Similarity: We first discuss the results for the sim-
ilarity test as defined in Section IV-B. We evaluate each
of the network parameters using the classifier presented in
Section IV-C across several thresholds T . As T decreases,
the tolerated similarity between reference and candidate
signature decreases, thus the FPR and TPR increases.

Figure 3 shows the similarity curve for the traces office
1, office 2, conference 1 and conference 2. This curve draws
the TPR as a function of the FPR. Table II shows the Area
Under the Curve (AUC) of these curves.

We observe that the transmission time generally outper-
forms all other network parameters, independently of the
considered network trace. If we consider the AUC, we
can rank the network parameters in decreasing fingerprint
accuracy as follows: transmission time, inter-arrival time,
medium access time and transmission rate. The transmission
time achieves an AUC between 79.4% and 95%. The inter-
arrival time has similar results (with the exception of the
conference 1 trace), with an AUC between 62.7% and
93.7%. The medium access time achieves, the frame size and
the transmission rate achieve an AUC between 61.5% and
86.4%, 53.4% and 86.7% and 4.0% and 83.7% respectively.
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(d) Conference 2

Figure 3. Similarity curves (TPR vs. FPR) for office and conference traces.
We do not apply classical receiver operating characteristic (ROC) curves
in this context, since we handle multiple classses (one class per reference
device).

Network parameter, FPR Conf. 1 Conf. 2 Office 1 Office 2
Transmission rate, 0.01 0% 0.6% 7.0% 3.0%
Transmission rate, 0.1 0% 7.5% 12.9% 7.0%
Frame size, 0.01 0% 0.2% 18.4% 13.8%
Frame size, 0.1 4.5% 2.5% 33.9% 20.4%
Medium access time, 0.01 22.7% 6.8% 34.0% 18.4%
Medium access time, 0.1 27.2% 28.1% 41.0% 21.1%
Transmission time, 0.01 0% 0% 56.1% 43.4%
Transmission time, 0.1 6.8% 5.8% 60.5% 50.5%
Inter-arrival time, 0.01 15.9% 6.4% 48.0% 21.5%
Inter-arrival time, 0.1 20.4% 32.2% 56.7% 27.5%

Table III
IDENTIFICATION RATIOS.

A notable exception to above ranking is the behavior of
the TPR for small FPRs in the conference setting. The two
network parameters inter-arrival time and medium access
time clearly outperform all other parameters. With a FPR
of 0.01, they yield a TPR between 7.8% and 8.3% for the
short conference trace and a between 41% and 45% for the
longer conference trace. The transmission time only yields
a TPR of 0.2% for the short conference trace and of 13.6%
for the longer conference trace (FPR=0.01).

The conference setting is a more difficult setting for
device fingerprinting than the office setting. The conference
trace systematically yields lower AUC and TPRs, even with
comparable reference database sizes and number of candi-
dates. In addition, the relative difference of performance
between the different network parameters becomes more
important. Particularly the transmission rate has a poor
fingerprint accuracy, due to the changing wireless conditions.
In a conference setting, devices often change location which
impacts the quality of the wireless signal and thus the
detection ratio.

2) Identification: We now present the results for the
identification test shown in Table III.

As with the similarity test, the transmission time outper-
forms the other network parameters in the office setting.
With an FPR of 0.1, between 43.4% and 60.5% of the
devices could be identified. With an FPR=0.01, between
50.5% and 56.1% of the devices could be identified. The
remaining ranking in decreasing order of TPR is the inter-
arrival time, the medium-access time and far behind with
very poor results the frame size and the transmission rate.

In contrast to the office setting, the transmission time
performs quite poorly in the conference traces. Instead, the
inter-arrival time and the medium-access time outperform all
other metrics. Using inter-arrival times, between 6.4% and
15.9% and between 20.4% and 32.2% of the devices could
be identified with an FPR of 0.01 and 0.1 respectively. Using
medium access times, between 6.8% and 22.7% and between
27.1% and 28.1% of the devices could be identified with an
FPR of 0.01 and 0.1 respectively.

Such identification ratios might appear small. However, if
we compare our results to the results obtained by Pang et al.



[15], which analyzed a similar problem to our identification
test, we achieve comparable results. For similar settings,
Pang et al. are able to detect 12% to 52% of users with
a FPR of 0.1 and 5% to 23% of users with a FPR of
0.01. In comparison, we could identify 27.1% to 32.2% and
6.8% to 22.7% of the devices with an FPR of 0.1 and 0.01
respectively.

In light of the different evaluation results, we consider
only inter-arrival times in the rest of the paper. This network
parameter always appears in the top 3 network parameters
(which are the transmission time, the inter-arrival time and
the medium access time). The inter-arrival time performs
well in most setting. Even in the difficult setting of the
conference trace the inter-arrival time yields good identi-
fication ratios. In contrast, the transmission time performs
well in most scenarios but poorly in the most difficult
setting of a conference. Finally, the medium-access time
has a similar behavior than the inter-arrival time but slightly
underperforms in ”easy” settings such as the office traces.

C. Implementation

We have developed a tool in Python based on the pcap
library. It analyses standard pcap files as well as live traffic
and extracts the different network parameters as described
in Section IV. The tool also implements the fingerprinting
methodology, i.e. the calculation of the device signatures,
reference database, similarity measures and the calculation
of accuracy metrics.

In our implementation we require that each training and
candidate signature uses a minimum number of 50 observa-
tions. Table I shows the resulting reference database sizes.
50 observations correspond roughly to 50 transmitted frames
for the observed device. The corresponding minimum obser-
vation time, i.e. the minimum time required to generate the
signature, ranges from several seconds to several minutes. It
depends on the number of frames per second transmitted by
the observed device. For instance, for one of the devices of
office 2 that did not generate much traffic this corresponds
to 30 seconds of traffic. We also evaluated the performance
with smaller thresholds, but we came to the conclusion
that a minimum of 50 observations is a good compromise
between the minimum time required to generate a signature
and matching accuracy.

VI. FACTORS IMPACTING THE INTER-ARRIVAL
HISTOGRAM SHAPE

Previous sections have shown that the frame inter-arrival
time is the most promising network parameter with difficult
monitoring conditions (typically in a conference setting) and
for the more difficult test of unique device identification.
This section discusses and demonstrates the different factors
at various levels of the observed device that impact the
frame inter-arrival time. Thus, this section gives an intuition
why this network parameter performs better than the other
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Figure 4. Example inter-arrival histogram of two different wireless devices
using different backoff implementations. Only data frames transmitted the
first time (no retries) and sent at 54 Mbps are shown.

network parameters proposed in Section III. This section
also shows that inter-arrival times depend on other network
parameters such as the medium access time and the trans-
mission rate. Thus, this section also gives insights on the
behavior of network devices regarding these parameters.

The inter-arrival time is composed of i) the transmission
period and ii) the emitting client station’s idle period. Both
periods have an impact on the signature value. We discuss
different wireless device behaviors that impact either one or
the other period.

A. Wireless medium access methods

The 802.11 standard [2] specifies mechanisms to avoid
collisions among multiple devices competing for the same
wireless medium. The wireless card or driver implement
these mechanisms. Their effect is essentially expressed in
the medium access wait time. Our evaluation (Section V)
shows that the medium access wait time performs well for
both the identification and the similarity test.

1) Impact of random backoff: The random backoff avoids
frame transmission right after the medium is sensed idle.
Instead, all client stations that would like to transmit frames
should ensure that the medium is idle for a specified period,
called DIFS, plus an additional random time, called backoff
time before sending data. Gopinath et al. [11] note that some
device manufacturers implement the 802.11 standard very
loosely. Berger et al. [5] also note differences such as devices
that systematically send frames during the first slot.

To evaluate the impact of these differences on the inter-
arrival time histograms, we conduct the following experi-
ment: We send a continuous UDP stream (using iperf)
from one wireless device placed within a Faraday cage. The
Faraday cage minimized the impacts of external factors on
the random backoff procedure. In the second experiment, we
just replace the sending device with a model from another
manufacturer and sent the same UDP stream again. We only
analyze frames transmitted at 54 Mbps. Figure 4 shows the
resulting histograms. We can notice that the first graph adds
one small additional slot before the 16 slots defined by the
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(a) RTS mechanism deactivated.
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(b) RTS mechanism activated. RTS
threshold set to 2000 bytes.

Figure 5. Example inter-arrival histogram for the same device with
different RTS settings.

standard. In addition, the distribution for the different slots
is slightly different on both devices. This indicates that the
two devices implement the backoff mechanism differently.

2) Impact of virtual carrier sensing: Virtual carrier sens-
ing enables a client station to reserve the medium for a
given amount of time (the contention-free-period). The client
station sends a Request to Send frame (RTS) and specifies
the expected data transmission duration in this frame. The
destination device replies with a Clear To Send frame (CTS).
The client station can then transmit data frames during the
reserved duration and all other stations are supposed to
mute during the time specified. The idle period between two
frames sent during contention-free-period is fixed to SIFS.
Wireless cards and drivers handle a so called RTS threshold,
which is a value between 0 and 2347 bytes.

If the size of the data to be sent is greater than the
RTS threshold, the virtual carrier sensing mechanism will
be triggered. Otherwise, the data frame will be sent using
the random backoff mechanism. In some wireless card
driver implementations, the RTS threshold can be changed
manually. In other ones, this threshold is hard-coded into the
driver. Some devices do not implement this mechanism at
all and exclusivley rely on the random backoff procedure.

To evaluate the impact of this mechanism on the inter-
arrival time histograms, we conduct the following experi-
ments: In a busy wireless network environment (our lab),
a client station running under Linux sends a continuous
UDP stream to a device connected by wire to an AP. We
use iperf to generate the UDP stream. We conduct the
experiment twice using two distinctive RTS settings on the
same sending client station: a) Virtual carrier sensing turned
off and b) RTS threshold set to 2000 bytes. Figure 5 shows
the resulting histograms. In Figure 5 a), all frames are sent
after a random backoff mechanism. In Figure 5 b), only RTS
frames are sent after a random backoff mechanism, while
data frames are sent during contention-free-period.
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(a) Device 1 signature
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(c) Device 1 transmission rate distri-
bution
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(d) Device 2 transmission rate dis-
tribution

Figure 6. Example signatures and transmission rate distributions of two
different wireless devices using different transmission rates.

B. Transmission rates

The transmission rates impact the time needed to transfer
a frame. With inter-arrival times, we measure the frames
end-of-reception time the effect of varying transmission rates
is thus directly observable in our inter-arrival histograms.

Our evaluation of the different network parameters (Sec-
tion V) showed that transmission rates alone are not discrim-
inant to measure device similarity and perform even more
poorly to identify a device in a unique manner. The inter-
arrival time between two frames depends on the transmission
rate of the frame. Thus, it is possible that the transmission
rate has a negative impact on the performance of the inter-
arrival time based fingerprints.

Transmission rates can be quite discriminant in a con-
trolled environment. Indeed, Gopinath et al. [11] highlight
that data transfer rates distribution of wireless cards depends
on the card’s vendor. Similarly, [10] shows that the rate
switching behavior might be used to characterize a wireless
access point. The latter two papers made experiments in a
very controlled environment.

We can illustrate the above behavior using the same
Faraday cage experiment done for the random backoff
timers. This time we include all frames sent at various
transmission rates in our measurements. Figure 6 shows the
resulting inter-arrival histograms and the distribution of used
transmission rates. We see that the second device changes its
transmission rate more frequently. This yields a completely
different histogram.



Inter−arrival time [µsec]

D
en

si
ty

0 500 1000 1500 2000 2500

0.
00

0.
05

0.
10

0.
15

(a) Netbook instance 1

Inter−arrival time [µsec]
D

en
si

ty

0 500 1000 1500 2000 2500

0.
00

0.
05

0.
10

0.
15

(b) Netbook instance 2

Figure 7. Example histogram based solely on data broadcast frames for
two different devices with same model and same OS.

C. Impact of network services

Services and applications installed on a device influence
the generated histograms. Applications generate the actual
data traffic transferred over 802.11 and thus the device’s
traffic load. In addition, applications possibly generate very
distinctive frames with specific frame sizes. This is typically
the case with network services such as Simple Service Dis-
covery Protocol or Link-Local Multicast Name Resolution,
running on the operating system. Our evaluation of the
different network parameters (Section V) shows that frame
sizes yield acceptable results for the similarity test, however
perform very poorly for the identification test.

Figure 7 shows the impact of network services on inter-
arrival histograms. The figure only shows data broadcast
frames. We generated the two histograms using two net-
books, same manufacturer, same model. Both netbooks ran
the same operating system with the same updates. Both
devices were active at the same time in the same wireless
environment. Each device generates very distinctive peaks,
eventhough both devices share the characteristics listed
before. For instance in Figure 7b, the protocols IGMPv3 and
Link-Local Multicast Name Resolution generate the peaks
at approx. 950 µsec and 1200 µsec respectively. The device
of Figure 7a has another set of services running, yielding a
different histogram. Note that the latter figure also illustrates
the results of Pang et al. [15] which uses broadcast packets
size as an implicit identifier.

D. Other factors

Each wireless card supports a different 802.11 feature
set or exhibits a specific behavior regarding some 802.11
features. For instance, Gopinath et al. [11] highlights that
devices implement the power save mode differently. We
observe in our measurements that the power management
feature generates additional traffic in the histogram. We can
isolate this traffic by observing the “Data null function”
frames which in most cases implement the power manage-
ment feature. Figure 8 shows two example histograms using
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Figure 8. Example histograms based solely on “Data null function” frames
for two different wireless cards.

two different wireless cards in the same wireless environ-
ment. As we can see, the frequency distribution of this type
of frames depends on the wireless card used. Finally, several
cards deactivate the power management feature under Linux.
In this case, the traffic generated by this feature disappears.
Other similar features might be mentioned, such as Probe
Requests frames for which the literature already noted that
driver specificities can be observed [9], or similarly for Probe
Responses in the case of AP’s.

VII. ATTACKS AND APPLICATIONS

In this section we discuss possible attacks against our
fingerprinting method. We also discuss the applicability of
our fingerprinting method in various contexts. We suppose
that the signatures rely on inter-arrival times.

A. Attacks

1) Forging a signature: An attacker may try to fake the
signature of a genuine device. As many factors impact the
signature (see Section VI) this can be a difficult task. A
casual attacker needs the same wireless equipment, driver
and very similar driver and software configuration than the
genuine device. A more powerful attacker may record traffic
of a genuine device and replay it, possibly live as in a
relay attack. The sensitivity to drivers and 802.11 parameters
complicates the attacker task. Indeed, the attacker must
insert its own attacking traffic within the replayed traffic
without modifying the signature. This restricts the nature
and quantity of the attacking traffic.

Another way of forging the signature is by learning and
then trying to mimic the signature of a genuine device. The
attacker may send traffic at a constant transmission rate and
vary the frame sizes for each frame type to reproduce the
distribution of the histogram. Some frame types, such as
RTS or Probe requests, depend on the driver or chipset and
thus require the attacker to change these features, which are
more difficult to forge than application level data.

2) Attacking the learning stage: It is important that the
learning stage is not polluted by the attacker. While this is
never guaranteed in real life situation, acceptable security



is obtained if the learning stage starts on a moment chosen
by the user or the administrator and not by the attacker.
Suppose that an AP would like to build a reference database.
The learning stage might be initiated upon a user command
(like pressing a button). Then the AP learns the signatures
of the allowed client stations during e.g. two minutes, which
is sufficient with our fingerprinting method.

3) Preventing fingerprinting: 802.11 communications are
highly sensitive to denial of service attacks. An attacker that
is capable of performing a denial of service attack is also
capable of preventing any fingerprinting activity. A more
subtle attacker may complicate the fingerprinting activity
without blocking all the traffic. Classically this consists in in-
jecting fake frames using the MAC addresses of the genuine
fingerprintees. To the best of our knowledge, all wireless
fingerprinting methods can be degraded by this attack. Our
fingerprinting method does not make an exception.

B. Applications

1) Detecting fake client stations: Access control based
on the MAC address of a client station occurs in various
contexts: enterprise network, hot-spots and home networks.
An attacker may want to spoof the MAC address of an autho-
rized station in order to connect. Our fingerprinting method
is applicable in such context because forging an inter-arrival
time signature is more difficult than just changing a MAC
address. An AP that routinely fingerprints its client stations
against a reference database of allowed client stations would
end-up noticing a non matching signature. It can then warn
the user or administrator that will react accordingly.

2) Detecting rogue AP’s: Fingerprinting can be used for
detecting impersonation of an AP: A hot-spot operator may
record and publish the signatures of valid APs. The client
station accessing the hot-spot routinely fingerprints the AP
and warns the user about mismatches. In this case, the
learning stage must be performed during a safe period: when
receiving the AP from the vendor or during the installation
of the hot-spot. Our method is applicable to APs, if we
ignore the data frames that the AP forwarded in lieu of
another device. Otherwise, applicative data generated by
other devices would pollute the AP’s signature. This reduces
the number of fingerprintable frames for an AP, but it is
sufficient to generate significant signatures.

3) Localizing and tracking devices: Several authors pro-
pose fingerprinting as an approximate location mechanism
[13], [4]. In [13] a mobile device fingerprints its wireless
environment and carries security decisions accordingly, like
asking a password or not. Our method is applicable in this
case, because it produces signatures for both client stations
and AP’s, and because it requires only a few frames to
generate signatures with a moving mobile device.

Finally, similar to [15], our work raises the question of
privacy. Indeed the generated signature may be used to trace

a user’s locations, even in cases where the device regularly
changes its MAC address in order to stay anonymous.

VIII. CONCLUSIONS

We evaluated a set of global wireless network parameters
with respect to their ability to identify 802.11 devices. To do
so, we defined a passive fingerprinting method that can be
implemented with standard equipment. We considered that
the network parameter frame inter-arrival time perform best
in comparison to the other network parameters considered,
in particular in the most difficult scenario of a conference
setting. Using this network parameter we are able to accu-
rately identify 802.11 client stations and access points in a
reasonable amount of time.

Whilst we gave some intuition about the ability to attack
our approach and explained to a certain extent which factors
impact the shape of the histogram, future work should
study these aspects in more detail. Especially the impact
of applications and device updates on our fingerprinting
method needs to be studied further. Finally, future work
should also investigate whether the fingerprinting method
can be improved by combining several network parameters.
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